

High contrast imaging and coronagraphy at ESO

Dimitri Mawet, PhD

Operations Staff Astronomer at ESO, JPL-Caltech Affiliate NACO, VISIR, and (soon) SPHERE Instrument Scientist dmawet@eso.org

Content

- 10 years of adaptive optics at Paranal
 - > NACO before
 - ➤ The potential future of NACO
- **VISIR+**
 - Coronagraphy with VISIR
 - Vector Vortex on VISIR
- SPHERE
 - The beast is coming soon to Paranal!
 - Potential game changer
- Glimpse of the future

10 YEARS of AO at ESO!

■ 10 years of adaptive optics at Paranal (NACO):

NACO

NAOS-CONICA

- ➤ Unique AO instrument:
 - Flexibility of visible and IR WFS
 - 14x14 DM (480 Hz)
 - Tons of modes:
 - Imaging J-M
 - Coronagraphy: Lyot, FQPM, APP
 - Polarimetry
 - Low-resolutionSpectroscopy

Exoplanet science

■ Exoplanets with NACO:

Chauvin et al 2004

Lagrange et al 2008, 2009, 2012

Janson et al 2010

Nexgen coronagraphy in action

A few results with the FQPM of NACO

AB Dor C: Boccaletti, Chauvin, Baudoz, Beuzit, et al. 2008

NGS1068: Gratadour, Rouan et al. 2005

PDS70: Riaud, Mawet, Absil, et al. 2006

The FQPM is the most productive nexgen coronagraph so far!

Recent exciting results

■ HD32297 at high resolution using FQPM / ADI

Boccaletti et al. 2012, submitted

Planet search around IM Lupi

- IM Lupi (Sz82):
 - > M0 WTTS
 - Very young star (~1 Myr)
 - Surrounded by optically thick disk (detected in submm, far-IR, imaged with WFPC2 and NICMOS)
 - ➤ Disk very massive (0.1 star) => unstable (Pinte et al. 2008)

Candidate companion

Candidate companion detected in 2008 by NACO (Mawet et al. 2012, in prep)

Long, very long follow-up

■ New data in 2011, treated with home-made "disk-friendly pipeline", adapted from damped-LOCI (Pueyo et al. 2011)

BUSTED !!! Sigh...

BUT...

- Interesting constraints and lessons learned:
 - Don't trust hipparcos measurement > 100 pc, for young objects, and objects with disks
 - Absolute astrometric precision is a chimera
 - Relative astrometric precision between different instruments is a nightmare (e.g. HST-NACO, NIRC2-NACO, NICI-NACO)
 - Age determination is tricky, depends on distance

New promising candidates

- John Krist's new HST/STIS disk (Krist et al. 2012, submitted):
 - Faintest disk ever imaged
 - ➤ G0 star (old ~2 Gyr)
 - Inclined ring
 - > 24 AU offset from the star

Signpost of a shepherding body?

Iterative Algorithm

NACO follow-up in L-band

Using the Lyot coronagraph / ADI:

Massive (>10 MJ) Candidate companion at the inner edge of the disk

Wisdom stability criterium fulfilled ± 10%

Synergy ground-space

- Previous two examples
- Ongoing ground-based follow-up of stars with IR excess detected by Spitzer and WISE (Hinkley, Stapelfeldt, Morales, Serabyn, Werner, Mawet ...)
 - Keck NIRC2
 - ➤ Palomar PHARO
 - NACO L-band
 - Soon VISIR (2 nights in April) => Disk imaging at N-band

Future of NACO

- NACO is a very unique instrument
 - ➤ Only IR WFS in the SH
 - Only L-band high contrast imager in SH!
- Its fate is the hands of the STC
 - > Trade-off:
 - Pressure from second-generation instruments
 - High maintenance cost for a 10 year old instrument
 VS
 - Galactic center science
 - Exoplanet imaging and characterization in L and M band

Still a lot of potential!

- 1- Provide complementary wavelength coverage to SPHERE
- 2- The L-K/H/J colors provide the most important photometric lever to characterize exoplanets atmosphere
- 3- Strehl naturally higher, and planet/ star contrast more favorable

Expected performance of SPHERE and L-band coronagraphy in terms of planetary mass detectable around the nearest K-and M-dwarfs located in young moving groups (Absil, Hanot, ULg).

L-band VVC for NACO

- Potential window of opportunity in the fall
 - > Development led by Ulg, Swedish technology:

• C. Delacroix, S. Habraken, M. Karlsson, O. Absil, C. Hanot, J.

Surdej, D. Mawet

Mid-IR from the ground: VISIR

■ Mid-IR from the ground

VISIR under the Cassegrain Focus of the 8.2-m VLT Melipal Telescope

ESO PR Photo 16a/04 (12 May 2004)

IQ and Sensitivity of VISIR

VISIR+

- New detector: 1Kx1K, less noise
- New prism:
 - With new detector => whole N band in one go
- Water Vapor monitor
- New modes:
 - > MIRI's FQPM (10.4 and 11.5 μm)
 - VVC (AGPM, effort led by Ulg)
 - Sparse Aperture Masking

New AQUARIUS detector

Parameter	VISIR Instrument	TIMMI2 Instrument	AQUARIUS	HAWAII-2RG
Manufacturer	Boeing/DRS	Raytheon	Raytheon	Teledyne
Material	Si:As	Si:As	Si:As	HgCdTe
Array size [pixels]	256x256	320x240	1024x1024	2048x2048
Pixel size [µm]	50	50	30	18
Unit cell format	Direct Injection	Direction Injection	Source Follower per Detector	Source Follower per Detector
Temperature [K]	6	6	6	70
Outputs	16	16	64	32
Spectral Response	5-28	5-28	5-28	0.6-5
[µm]				
Well Capacity	2E6/20E6	10E6/30E6	1E6/11E6	1E5
[electrons]	(switchable)	(switchable)	(switchable)	
Noise [e rms]	300/2000 e rms	1000/3000 e rms	100/1000 e rms	< 10 e rms
Dark Current [e/pixel/s]	2500 е	100 e	1 e	1 e
Frame Rate [Hz]	100	100	120	1
QE	>50%	>40%	>50%	>90%
Year	1990s	1990s	2010	2005
Issues	Cosmetics	Cosmetics		None

Coronagraphy

- FQPM of MIRI (made out of Ge)
- VVC-AGPM (made out of Diamond)
- Field tracking and ADI for PSF subtraction

First VVC @ N-band

- Micro-fabrication (nano-imprint lithography, reactive ion etching), metrology (SEM, AFM, cleaving/cracking!)
- LEFT: High aspect ratio subwavelength grating
- Depth ~13.7 µm
- Period ~4.6 µm
- Line width (top) ~1.8 µm
- RIGHT: Antireflective structure (2.62x2µm) etched on the backside of the AGPM, allowing a total tansmittance between 89 and 95% over the band.

AGPM... #3!

- Upper N-band 11-13.2 μm
- 3 components (AGPM1,2,3) etched with slightly different specifications Best performances: AGPM3 with a Null Depth ~6x10-4 (contrast ~3x10-6 @ 2λ/D)
- AGPM 3 is planned to be installed on VISIR (upgrade in may-august 2012) and tested on 22nd of September 2012!!

Mount

SPHERE

Spectro-Polarimetric High-Contrast Exoplanet Research

Institute/People

- CNRS/LAOG
- CNRS/LAM
- CNRS/LESIA
- CNRS/LUAN
- ONERA
- MPIA
- INAF/Padova Obs
- Obs de Geneve
- ETH Zurich
- NOVA
- ASTRON

Science Goals

- High contrast imaging down to planetary mass companions
- Investigate large target sample: statistics, variety of stellar classes, evolutionary trends
- First order characterization of the atmosphere (Clouds, dust content, Methane, water absorption, Effective temperature, radius, dust polarization)

Understand the planetary system origins

The whole picture

(adapted from J. Trauger)

Concept overview

Work Flow

- ExAO coronagraphy differential imaging
- Differential imaging: DBI, SDI, PDI / ADI

Modes summary

	ZIMPOL	IRDIS	IFS
FoV	Sq 3.5" (instantaneous) Up to 4" radius (mosaic)	Sq 11"	Sq 1.77"
Spectral Range	0.5 - 0.9 µm	0.95 - 2.32 μm	0.95 - 1.35/1.65 μm
Spectral information	BB, NB	BB, NB Slit spectro: 50/400	50 / 30
Linear Polarisation	Simultaneous on same detector, x 2 arms, exchangeable	Simultaneous dual beam, exchangeable	×

Implementation

At the telescope

CPI

- Common path infrastructure
- Contains the coronagraphs (Lyot, APLC, FQPM), all the foreoptics

Mode	Static wavefront error from VLT Nasmyth focus		
Main survey mode, 950-1350 to IFS, H-band to IRDIS	<67nm to IRDIS	<69nm to IFS	
Extended IFS mode, 950-1700 to IFS, Ks to IRDIS	<69nm to IRDIS	<69nm to IFS	
IRDIS only	<68nm to IRDIS		
All NIR science modes (100% VIS on WFS)		< 65 nm to WFS	
ZIMPOL broad band	<65nm to ZIMPOL	<65nm to WFS	
ZIMPOL R-band	<65nm to ZIMPOL	<95nm to WFS	

SAXO

SAXO

- High-order Adaptive Optics system
 - ➤ 40x40 DM (Piezo-stack, CILAS)
 - ➤ 1.2 kHz visible WFS (41x41 SH)
- Recently closed the loop with turbulence generator:
 - > >80% Strehl in H with 0".65 seeing and 10 m/s wind

Spatial filter validated in the lab

NCPA

- 2-stage Focus diversity
 - > EFC not the baseline but currently considered
- Down to a few nm rms
- PHILISOPHY: rely on stability of the platform (active damping system and passive thermal control)
- VISIBLE images:

Coronagraphs

AFQPM

Pros: IWA ~1 λ/d Simple (no apodizer needed)

Cons:

Difficult to make achromatic Phase transition lead to useful FoV loss Sensitivity to central obscuration and loworder aberrations (tip-tilt)

(AP)LC

Pros:
Fairly achromatic
Fairly insensitive to central obscuration
and tip-tilt

Cons: IWA ~3-4 λ/d Apodizer difficult to get right

IRDIS

Modes and Expected Perf

Mode	Use Science case	Wavelength Bands	Rotator mode	Filters, Resolution	Contrast Performance (1h, SNR=5, H<6)	
Dual Band Imaging	Survey mode (H only) Characterization of cool outer companions	Y,J,H,Ks	Pupil or field stabilized	6 pairs R=20-30	~ 10 ⁻⁵ at 0.1" ~10 ⁻⁶ at 0.5"	
Dual Polarimetry Imaging	Reflected light on extended environment	Y,J,H,Ks	Pupil or field stabilized	10 Narrow bands	~ 10 ⁻⁴ at 0.1" ~ 10 ⁻⁵ at 0.5" 30% circumstellar source	schroe roe amore male madeuriler amini di m
Slit Spectroscopy	Characterization of not too faint companions	LRS : Y-Ks MRS: Y-H		LRS : R=60 MRS : R=420	~ 3.10 ⁻⁴ at 0.3" ~ 10 ⁻⁵ at 0.5"	587)-43
Classical Imaging	Environment with no spectral features	Y,J,H,Ks	Pupil or field stabilized	4 Broad 10 Narrow bands	~ 10 ⁻³ at 0.1"	

Differential aberrations
< 10 nm, really close to
The 5 nm goal!

High contrast imaging at ESO | 03.21.2012

IFS

Integral Field Spectrograph

Expected Perf

Differential imaging IFS/IRDIS

Simultaneous use of Y-J band with IFS Dual imaging in H

- Multiplex advantage for field and spectral range
- Mutual support: false alarm reduction, operation, calibration
- Immediate companion early classification

ZIMPOL

■ Visible differential polarimeter

Expected Perf

Planet	Angular Sep (mas)	Int. Contrast	
Тор	70	2e-7	
Left	80	7e-7	
Bottom	150	9e-7	
Right	100	3e-7	

Current status and preliminary schedule

- IRDIS, IFS, ZIMPOL, CPI: year-long sub-system level quality and operation checks, problem solving characterizations - 2011
- System integration in Grenoble
 - IRDIS and IFS integrated on CPI Dec 2011
 - ZIMPOL integrated on CPI Jan 2012
 - SAXO acceptance Mar 2012
 - System level image quality: closing the loops, stability checks, ... March-April 2012
 - Full system operation and performance in all modes Summer 2012
- PAE end of Summer 2012
- Shipment, reintegration, first light: end 2012
- On-sky critical tests for observation validation: Feb 2013
- First CfP: March 2013

Glimpse of the Future

In 10 years from now

